Effect of PEI-coated MNPs on the Regulation of Cellular Focal Adhesions and Actin Stress Fibres

Author:

Narayanasamy Kaarjel K.,Price Joshua C.,Merkhan Marwan,Elttayef Ajile,Dobson Jon,Telling Neil D.

Abstract

ABSTRACTThe biocompatibility of surface coated/functionalised magnetic nanoparticles (MNPs) is key to their successful incorporation and application in biological systems. Polyethylene imine (PEI) -coated MNPs provide improved in vitro transfection efficiency compared to conventional chemical methods such as Lipofectamine and cationic polymers, and are also safer than viral transduction. Commercial cell toxicity assays are useful for end-point and high-throughput screening, providing fast results and an overview of cell health. However these assays only take into account cells that have undergone an extreme toxic response leading to cell death. Cell toxicity is a complex process which can be expressed in many forms, through morphological, metabolic, and epigenetic changes. A common indicator of cell stress and toxic response is increased cell adhesion and stress fibre formation. It is important to identify these changes in cells as it may affect downstream results and applications in biomedicine. This study explores the effect of the nanomagnetic transfection agent PEI-coated MNPs (MNP-PEIs) and an external magnetic field on cell behaviour, by studying particle internalization, changes in cellular morphology, and cell adhesion. We found that MNP-PEIs induced cell stress through a dose-dependent increase in cell adhesion via the overexpression of vinculin and formation of actin stress fibres. While the presence of PEI was the main contributor to increased cell stress, free PEI polyplexes induced higher toxicity compared to PEI bound to MNPs. MNPs without PEI coating however did not adversely affect cells suggesting a chemical effect instead of a mechanical one. In addition, genes identified as being associated with actin fibre regulation and cell adhesion, showed significant increases in expression due to the internalization of the MNP-PEI complex. From these results, we identify anomalous cell behaviour, morphology, and gene expression after interaction with MNP-PEIs, as well as a safe dosage to reduce acute cell toxicity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3