Current production as a rapid response expression reporter under micro-oxic and anoxic conditions

Author:

Madsen Cody,Barvo Noelia,Fromwiller Ciara,Tyll Serenity,Amburn Brian,Ducat Danny,Hamberger Bjoern,TerAvest Michaela A.

Abstract

AbstractInducible gene expression is crucial for regulating cellular processes and production of compounds within cellular pathways. Yet, inducing gene expression is only the first step to utilizing cellular processes for an applied purpose such as biosensors. Detecting when gene expression occurs is central to understanding the overall mechanism of the process as well as maximizing the process. Fluorescent proteins have been established as the primary tool for detecting gene expression in inducible systems. This study proposes electricity production as an alternate tool in reporting gene expression. Using a model organism for electricity production, Shewanella oneidensis MR-1, current was shown to be an efficient reporter for gene expression and comparable to superfolder green fluorescent protein (GFP). Through regulation of the lac operator and T7 promoter, current production was induced by isopropyl β-D-1-thiogalactopyranoside (IPTG) addition. IPTG addition induced translation of GFP and the MtrB protein, which complemented a ∆mtrB strain of S. oneidensis MR-1 and restored current production. This inducible system generated reproducible current in 18 minutes in both micro-oxic and anoxic conditions. These results show that current is a fast reporter for gene expression.Financial DisclosureThe team was supported by the following departments and colleges at Michigan State University: College of Natural Science, College of Engineering, Biochemistry and Molecular Biology Department and Plant Research Laboratory. The team also received support from the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494) and startup funding from the Department of Molecular Biology and Biochemistry, Michigan State University and support from Michigan State University AgBioResearch (MICL02454) (to B.H.). This work was also supported by NSF CAREER (Award #1254238) to T.A.W. MSU Alpha Chi Sigma also supported the team.Competing InterestsThe authors declare that no competing interests exist.Ethics StatementN/AData AvailabilityAll data will be supplied upon request by the corresponding author.This work was assessed during the iGEM/PLOS Realtime Peer Review Jamboree on 23rd February 2018 and has been revised in response to the reviewers’ comments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3