A putative novel role for Eip74EF in male reproduction in promoting sperm elongation at the cost of male fecundity

Author:

Chebbo Sharif,Josway Sarah,Belote John M.,Manier Mollie K.ORCID

Abstract

ABSTRACTSpermatozoa are the most morphologically variable cell type, yet little is known about genes controlling natural variation in sperm shape. Drosophila fruit flies have the longest sperm known, which are evolving under postcopulatory sexual selection, driven by sperm competition and cryptic female choice. Long sperm outcompete short sperm but primarily when females have a long seminal receptacle (SR), the primary sperm storage organ. Thus, selection on sperm length is mediated by SR length, and the two traits are coevolving across the Drosophila lineage, driven by a genetic correlation and fitness advantage of long sperm and long SR genotypes in both males and females. Ecdysone induced protein 74EF (Eip74EF) is expressed during post-meiotic stages of spermatogenesis, when spermatid elongation occurs, and we found that it is rapidly evolving under positive selection in Drosophila. Hypomorphic knockout of the E74A isoform leads to shorter sperm but does not affect SR length, suggesting that E74A may be involved in promoting spermatid elongation but is not a genetic driver of male-female coevolution. We also found that E74A knockout has opposing effects on fecundity in males and females, with an increase in fecundity for males but a decrease in females, consistent with its documented role in oocyte maturation. Our results suggest a novel function of Eip74EF in spermatogenesis and demonstrates that this gene influences both male and female reproductive success. We speculate on possible roles for E74A in spermatogenesis and male reproductive success.RESEARCH HIGHLIGHTSEip74EF promotes oocyte maturation in Drosophila. We found evidence that it also promotes sperm elongation in males, but at a cost to male fecundity. Mutant males have shorter sperm but have higher reproductive success, while females have reduced fecundity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3