Author:
Montag-Sallaz Monique,Montag Dirk
Abstract
The effector immediate-early gene (IEG) arg 3.1, also called arc, encodes a protein interacting with the neuronal cytoskeleton. The selective localization of arg 3.1/arc mRNA in activated dendritic segments suggests that the arg 3.1/arc protein may be synthesized at activated post-synaptic sites and that arg 3.1/arc could participate in structural and functional modifications underlying cognitive processes like memory formation. To analyze whether learning itself is sufficient to trigger expression of arg 3.1/arc, we developed a one-trial learning paradigm in which mice learned to enter a dark compartment to escape from an aversively illuminated area. Arg 3.1/arc mRNA expression was analyzed by in situ hybridization in three groups of mice as follows: a control group with no access to the dark compartment, a learning group having access to the dark compartment for one trial, and a retrieval group having access to the dark compartment for two trials on consecutive days. All animals from the learning and retrieval groups escaped the illuminated area, and those tested 24 h later (retrieval group) showed a strongly reduced latency to enter the dark compartment, demonstrating the validity of our learning paradigm to induce long-term memory. Our results show that acquisition of a simple task results in a brain area-specific biphasic increase in arg 3.1/arc mRNA expression 15 min and 4.5 h post-training. This increase was detected specifically in the learning group but neither in the control nor in the retrieval groups. The pattern of arg 3.1/arc mRNA expression corresponds temporally to the two mRNA- and protein-synthesis-dependent periods of long-term memory formation. Our study provides the first unequivocal evidence that arg 3.1/arc expression is induced by a learning task and strongly suggests a role of arg 3.1/arc mRNA in the early and late cellular mechanisms underlying the stabilization of the memory trace.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献