Nonsense suppression position effect implicates poly(A)-binding protein in the regulation of translation termination

Author:

Wu Chan,Roy Bijoyita,He Feng,Jacobson AllanORCID

Abstract

SUMMARYReadthrough of translation termination codons, also known as nonsense suppression, is a relatively inefficient process mediated by ribosomal A site recognition and insertion of near-cognate tRNAs. Multiple factors influence readthrough efficiency, including nonsense codon specificity and context. To determine whether nonsense codon position in a gene influences the extent of readthrough, we generated a series of LUC nonsense alleles and quantitated both readthrough and termination efficiencies at each nonsense codon in yeast cells lacking nonsense-mediated mRNA decay (NMD) activity. Readthrough efficiency for premature termination codons (PTCs) manifested a marked dependence on PTC proximity to the mRNA 3’-end, decreasing progressively across the LUC ORF but increasing with 3’-UTR lengthening. These effects were eliminated, and translation termination efficiency decreased considerably, in cells harboring pab1 mutations. Our results support a critical role for poly(A)-binding protein in the regulation of translation termination and suggest that inefficient termination is the trigger for NMD.

Publisher

Cold Spring Harbor Laboratory

Reference87 articles.

1. In Vitro Reconstitution of Eukaryotic Translation Reveals Cooperativity between Release Factors eRF1 and eRF3

2. Aberrant termination triggers nonsense-mediated mRNA decay

3. A faux 3′-UTR promotes aberrant termination and triggers nonsense- mediated mRNA decay

4. Amrani, N. , and Jacobson, A. (2006). All termination events are not equal: premature termination is aberrant and triggers NMD. In Nonsense-mediated mRNA decay, L.E. Maquat , ed. (Georgetown, TX: Landes Bioscience), pp. 15–25.

5. Early nonsense: mRNA decay solves a translational problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3