Genome editing reveals reproductive and developmental dependencies on specific types of vitellogenin in zebrafish (Danio rerio)

Author:

Yilmaz OzlemORCID,Patinote Amelie,Nguyen Thaovi,Com Emmanuelle,Pineau Charles,Bobe Julien

Abstract

ABSTRACTOviparous vertebrates produce multiple forms of vitellogenin (Vtg), the major source of yolk nutrients, but little is known about their individual contributions to reproduction and development. This study employed a CRISPR/Cas9 genome editing to assess essentiality and functionality of zebrafish (Danio rerio) type-I and -III Vtgs. The multiple CRISPR approach employed to knock out (KO) all genes encoding type-I vtgs (vtg1, 4, 5, 6, and 7) simultaneously (vtg1-KO), and the type-III vtg (vtg3) individually (vtg3-KO). Results of PCR genotyping and sequencing, qPCR, LC-MS/MS and Western blotting showed that only vtg6 and vtg7 escaped Cas9 editing. In fish whose remaining type-I vtgs were incapacitated (vtg1-KO), and in vtg3-KO fish, significant increases in Vtg7 transcript and protein levels occurred in liver and eggs, a heretofore-unknown mechanism of genetic compensation to regulate Vtg homeostasis. Fecundity was more than doubled in vtg1-KO females, and fertility was ~halved in vtg3-KO females. Substantial mortality was evident in vtg3-KO eggs/embryos after only 8 h of incubation and in vtg1-KO embryos after 5 d. Hatching rate and timing were markedly impaired in vtg mutant embryos and pericardial and yolk sac/abdominal edema and spinal lordosis were evident in the larvae, with feeding and motor activities also being absent in vtg1-KO larvae. By late larval stages, vtg mutations were either completely lethal (vtg1-KO) or nearly so (vtg3-KO). These novel findings offer the first experimental evidence that different types of vertebrate Vtg are essential and have disparate requisite functions at different times during both reproduction and development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diversification and Classification of Vitellogenin in Fishes;Vitellogenin in Fishes- Diversification, Biological Properties, and Future Perspectives;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3