Proofreading-deficient coronaviruses adapt over long-term passage for increased fidelity and fitness without reversion of exoribonuclease-inactivating mutations

Author:

Graepel Kevin W.,Lu Xiaotao,Case James Brett,Sexton Nicole R.,Smith Everett Clinton,Denison Mark R.

Abstract

ABSTRACTThe coronavirus (CoV) RNA genome is the largest among single-stranded positive sense RNA viruses. CoVs encode a proofreading 3′→5′exoribonuclease within nonstructural protein 14 (nsp14-ExoN) that is responsible for CoV high-fidelity replication. Alanine substitution of ExoN catalytic residues [ExoN(-)] in SARS-CoV and murine hepatitis virus (MHV) disrupts ExoN activity, yielding viable mutant viruses with defective replication, up to 20-fold decreased fidelity, and increased susceptibility to nucleoside analogs. To test the stability of the ExoN(-) genotype and phenotype, we passaged MHV-ExoN(-) 250 times in cultured cells (P250), in parallel with WT-MHV. Compared to MHV-ExoN(-) P3, MHV-ExoN(-) P250 demonstrated enhanced replication, reduced susceptibility to nucleoside analogs, and increased competitive fitness. However, passage did not select for complete or partial reversion at the ExoN-inactivating mutations. We identified novel amino acid changes within the RNA-dependent RNA polymerase (nsp12-RdRp) and nsp14 of MHV-ExoN(-) P250 that partially account for the observed changes in replication, susceptibility to nucleoside analogs, and competitive fitness observed in the passaged virus population, indicating that additional determinants can compensate for the activities of nsp14-ExoN. Our results suggest that while selection favors restoration of replication fidelity in ExoN(-) CoVs, there may be a significant barrier to ExoN(-) reversion. These results also support the hypothesis that high-fidelity replication is linked to CoV fitness and identify additional candidate proteins that may regulate CoV replication fidelity.IMPORTANCEUnique among RNA viruses, CoVs encode a proofreading exoribonuclease (ExoN) in nsp14 that mediates high-fidelity RNA genome replication. Proofreading-deficient CoVs with disrupted ExoN activity [ExoN(-)] are either non-viable or have significant defects in replication, RNA synthesis, fidelity, fitness, and virulence. In this study, we show that ExoN(-) murine hepatitis virus can adapt over long-term passage for increased replication and fitness without reverting the ExoN-inactivating mutations. Passage-adapted ExoN(-) mutants also demonstrate increasing resistance to nucleoside analogs that is only partially explained by secondary mutations in nsp12 and nsp14. These data suggest that enhanced resistance to nucleoside analogs is mediated by the interplay of multiple replicase proteins and support the proposed link between CoV fidelity and fitness.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3