Genomic characterization and curation of UCEs improves species tree reconstruction

Author:

Van Dam Matthew H.ORCID,Henderson James B.,Esposito Lauren,Trautwein Michelle

Abstract

ABSTRACTUltraconserved genomic elements (UCEs), are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes is agnostic to genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here we characterized UCEs from 12 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated 4 different sets of UCE markers by genomic category from 5 different studies including; birds, mammals, fish, Hymenoptera (ants, wasps and bees) and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by 2 or more UCEs, corresponding to non-overlapping segments of a single gene. We considered these UCEs to be non-independent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging co-genic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees were significantly improved across all datasets. Increased loci length appears to drive this increase in bootstrap support. Additionally, we found that gene trees generated from merged UCEs were more accurate than those generated by unmerged and randomly merged UCEs, based on our simulation study. This modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3