Abstract
SummaryAutosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2 encoding polycystin-1 (PC1) and polycystin-2 (PC2), respectively. The molecular pathways linking polycystins to cyst development in ADPKD are still unclear. Intracystic fluid secretion via ion transporters and channels plays a crucial role in cyst expansion in ADPKD. Unexpectedly, we observed significant and selective up-regulation of NHA2, a member of the SLC9B family of Na+/H+ exchangers that correlated with cyst size and disease severity in ADPKD patients. Using three-dimensional cultures of MDCK cells to model cystogenesis in vitro, we show that ectopic expression of NHA2 is causal to increased cyst size. Induction of PC1 in MDCK cells inhibited NHA2 expression with concordant inhibition of Ca2+ influx through store-dependent and independent pathways, whereas reciprocal activation of Ca2+ influx by a dominant negative, membrane-anchored C-terminal tail fragment of PC1 elevated NHA2. We show that NHA2 is a target of Ca2+/NFAT signaling and is transcriptionally induced by methylxanthine drugs such as caffeine and theophylline, which are contraindicated in ADPKD patients. Finally, we observe robust induction of NHA2 by vasopressin, which is physiologically consistent with increased levels of circulating vasopressin and up-regulation of vasopressin V2 receptors in ADPKD. Our findings have mechanistic implications on the emerging use of vasopressin V2 receptor antagonists such as tolvaptan as safe and effective therapy for PKD and reveal a potential new regulator of transepithelial salt and water transport in the kidney.
Publisher
Cold Spring Harbor Laboratory