Evolutionary analyses of base-pairing interactions in DNA and RNA secondary structures

Author:

Golden MichaelORCID,Murrell BenORCID,Pybus Oliver G.,Martin DarrenORCID,Hein Jotun

Abstract

AbstractPairs of nucleotides within functional nucleic acid secondary structures often display evidence of coevolution that is consistent with the maintenance of base-pairing. Here we introduce a sequence evolution model, MESSI, that infers coevolution associated with base-paired sites in DNA or RNA sequence alignments. MESSI can estimate coevolution whilst accounting for an unknown secondary structure. MESSI can also use GPU parallelism to increase computational speed. We used MESSI to infer coevolution associated with GC, AU (AT in DNA), GU (GT in DNA) pairs in non-coding RNA alignments, and in single-stranded RNA and DNA virus alignments. Estimates of GU pair coevolution were found to be higher at base-paired sites in single-stranded RNA viruses and non-coding RNAs than estimates of GT pair coevolution in single-stranded DNA viruses, suggesting that GT pairs do not stabilise DNA secondary structures to the same extent that GU pairs do in RNA. Additionally, MESSI estimates the degrees of coevolution at individual base-paired sites in an alignment. These estimates were computed for a SHAPE-MaP-determined HIV-1 NL4-3 RNA secondary structure and two corresponding alignments. We found that estimates of coevolution were more strongly correlated with experimentally-determined SHAPE-MaP pairing scores than three non-evolutionary measures of base-pairing covariation. To assist researchers in prioritising substructures with potential functionality, MESSI automatically ranks substructures by degrees of coevolution at base-paired sites within them. Such a ranking was created for an HIV-1 subtype B alignment, revealing an excess of top-ranking substructures that have been previously identified as having structure-related functional importance, amongst several uncharacterised top-ranking substructures.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. Anderson, J. 2014. Stochastic Context-Free Grammars and RNA Secondary Structure Prediction. In M. S. Poptsova , editor, Genome Analysis: Current Procedures and Applications, pages 339–66. Caister Academic Press: England.

2. Partition function and base pairing probabilities of RNA heterodimers;Algorithms for Molecular Biology,2006

3. Founder Effects in the Assessment of HIV Polymorphisms and HLA Allele Associations

4. Rfam 11.0: 10 years of RNA families

5. Coevolution in RNA Molecules Driven by Selective Constraints: Evidence from 5S rRNA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3