Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification

Author:

Warren Jessica M.,Salinas-Giegé Thalia,Hummel Guillaume,Coots Nicole L.,Svendsen Joshua M.,Brown Kristen C.,Maréchal-Drouard Laurence,Sloan Daniel B.ORCID

Abstract

ABSTRACTDifferences in tRNA expression have been implicated in a remarkable number of biological processes. There is growing evidence that tRNA genes can play dramatically different roles depending on both expression and post-transcriptional modification, yet sequencing tRNAs to measure abundance and detect modifications remains challenging. Their secondary structure and extensive post-transcriptional modifications interfere with RNA-seq library preparation methods and have limited the utility of high-throughput sequencing technologies. Here, we combine two modifications to standard RNA-seq methods by treating with the demethylating enzyme AlkB and ligating with tRNA-specific adapters in order to sequence tRNAs from four species of flowering plants, a group that has been shown to have some of the most extensive rates of post-transcriptional tRNA modifications. This protocol has the advantage of detecting full-length tRNAs and sequence variants that can be used to infer many post-transcriptional modifications. We used the resulting data to produce a modification index of almost all unique reference tRNAs inArabidopsis thaliana, which exhibited many anciently conserved similarities with humans but also positions that appear to be “hot spots” for modifications in angiosperm tRNAs. We also found evidence based on northern blot analysis and droplet digital PCR that, even after demethylation treatment, tRNA-seq can produce highly biased estimates of absolute expression levels most likely due to biased reverse transcription. Nevertheless, the generation of full-length tRNA sequences with modification data is still promising for assessing differences in relative tRNA expression across treatments, tissues or subcellular fractions and help elucidate the functional roles of tRNA modifications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3