Author:
Benjamin Ari S.,Fernandes Hugo L.,Tomlinson Tucker,Ramkumar Pavan,VerSteeg Chris,Chowdhury Raeed,Miller Lee,Kording Konrad Paul
Abstract
AbstractNeuroscience has long focused on finding encoding models that effectively ask “what predicts neural spiking?” and generalized linear models (GLMs) are a typical approach. It is often unknown how much of explainable neural activity is captured, or missed, when fitting a GLM. Here we compared the predictive performance of GLMs to three leading machine learning methods: feedforward neural networks, gradient boosted trees (using XGBoost), and stacked ensembles that combine the predictions of several methods. We predicted spike counts in macaque motor (M1) and somatosensory (S1) cortices from standard representations of reaching kinematics, and in rat hippocampal cells from open field location and orientation. In general, the modern methods (particularly XGBoost and the ensemble) produced more accurate spike predictions and were less sensitive to the preprocessing of features. This discrepancy in performance suggests that standard feature sets may often relate to neural activity in a nonlinear manner not captured by GLMs. Encoding models built with machine learning techniques, which can be largely automated, more accurately predict spikes and can offer meaningful benchmarks for simpler models.
Publisher
Cold Spring Harbor Laboratory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献