Managing genomic variant calling workflows with Swift/T

Author:

Ahmed Azza E.,Heldenbrand Jacob,Asmann Yan,Fadlelmola Faisal M.,Katz Daniel S.ORCID,Kendig Katherine,Kendzior Matthew C.,Li Tiffany,Ren Yingxue,Rodriguez Elliott,Weber Matthew R.,Wozniak Justin M.,Zermeno Jennie,Mainzer Liudmila S.ORCID

Abstract

AbstractGenomic variant discovery is frequently performed using the GATK Best Practices variant calling pipeline, a complex workflow with multiple steps, fans/merges, and conditionals. This complexity makes management of the workflow difficult on a computer cluster, especially when running in parallel on large batches of data: hundreds or thousands of samples at a time. Here we describe a wrapper for the GATK-based variant calling workflow using the Swift/T parallel scripting language. Standard built-in features include the flexibility to split by chromosome before variant calling, optionally permitting the analysis to continue when faulty samples are detected, and allowing users to analyze multiple samples in parallel within each cluster node. The use of Swift/T conveys two key advantages: (1) Thanks to the embedded ability of Swift/T to transparently operate in multiple cluster scheduling environments (PBS Torque, SLURM, Cray aprun environment, etc.,) a single workflow is trivially portable across numerous clusters; (2) The leaf functions of Swift/T permit developers to easily swap executables in and out of the workflow, conditional on the analyst’s choice, which makes the workflow easy to maintain. This modular design permits separation of the workflow into multiple stages and the request of resources optimal for each stage of the pipeline. While Swift/T’s implicit data-level parallelism eliminates the need for the developer to code parallel analysis of multiple samples, it does make debugging of the workflow a bit more difficult, as is the case with any implicitly parallel code. With the above features, users have a powerful and portable way to scale up their variant calling analysis to run in many traditional computer cluster architectures.https://github.com/ncsa/Swift-T-Variant-Callinghttp://swift-t-variant-calling.readthedocs.io/en/latest/

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3