Graph analysis of looming-selective networks in the tectum, and its replication in a simple computational model

Author:

Khakhalin Arseny S.ORCID

Abstract

AbstractLooming stimuli evoke behavioral responses in most animals, yet the mechanisms of looming detection in vertebrates are poorly understood. Here we hypothesize that looming detection in the tectum may rely on spontaneous emergence of synfire chains: groups of neurons connected to each other in the same sequence in which they are activated during a loom. We then test some specific consequences of this hypothesis. First, we use high-speed calcium imaging to reconstruct functional connectivity of small networks within the tectum of Xenopus tadpoles. We report that reconstructed directed graphs are clustered and hierarchical, that their modularity increases in development, and that looming-selective cells tend to collect activation within these graphs. Second, we describe spontaneous emergence of looming selectivity in a computational developmental model of the tectum, governed by both synaptic and intrinsic plasticity, and driven by structured visual inputs. We show that synfire chains contribute to looming detection in the model; that structured inputs are critical for the emergence of selectivity, and that biological tectal networks follow most, but not all predictions of the model. Finally, we propose a conceptual scheme for understanding the emergence and fine-tuning of collision detection in developing aquatic animals.

Publisher

Cold Spring Harbor Laboratory

Reference118 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3