Author:
Wang Yanwen,Olieslagers Servé,Johnsen Anne Berit,Mastitskaya Svetlana,Ni Haibo,Zhang Yu,Black Nicholas,Anderson Cali,Cox Charlotte,Bucchi Annalisa,Wegner Sven,Bano-Otalora Beatriz,Petit Cheryl,Gill Eleanor,Logantha Sunil Jit,Ashton Nick,Hart George,Zhang Henggui,Cartwright Elizabeth,Wisloff Ulrik,Da Costa Martins Paula,DiFrancesco Dario,Dobrzynski Halina,Piggins Hugh D.,Boyett Mark R.,D’Souza Alicia
Abstract
ABSTRACTIn the human, there is a circadian rhythm in the resting heart rate and it is higher during the day in preparation for physical activity. Conversely, slow heart rhythms (bradyarrhythmias) occur primarily at night. Although the lower heart rate at night is widely assumed to be neural in origin (the result of high vagal tone), the objective of the study was to test whether there is an intrinsic change in heart rate driven by a local circadian clock. In the mouse, there was a circadian rhythm in the heart rate in vivo in the conscious telemetrized animal, but there was also a circadian rhythm in the intrinsic heart rate in denervated preparations: the Langendorff-perfused heart and isolated sinus node. In the sinus node, experiments (qPCR and bioluminescence recordings in mice with a Per1 luciferase reporter) revealed functioning canonical clock genes, e.g. Bmal1 and Per1. We identified a circadian rhythm in the expression of key ion channels, notably the pacemaker channel Hcn4 (mRNA and protein) and the corresponding ionic current (funny current, measured by whole cell patch clamp in isolated sinus node cells). Block of funny current in the isolated sinus node abolished the circadian rhythm in the intrinsic heart rate. Incapacitating the local clock (by cardiac-specific knockout of Bmal1) abolished the normal circadian rhythm of Hcn4, funny current and the intrinsic heart rate. Chromatin immunoprecipitation demonstrated that Hcn4 is a transcriptional target of BMAL1 establishing a pathway by which the local clock can regulate heart rate. In conclusion, there is a circadian rhythm in the intrinsic heart rate as a result of a local circadian clock in the sinus node that drives rhythmic expression of Hcn4. The data reveal a novel regulator of heart rate and mechanistic insight into the occurrence of bradyarrhythmias at night.
Publisher
Cold Spring Harbor Laboratory