Circadian control of intrinsic heart rate via a sinus node clock and the pacemaker channel

Author:

Wang Yanwen,Olieslagers Servé,Johnsen Anne Berit,Mastitskaya Svetlana,Ni Haibo,Zhang Yu,Black Nicholas,Anderson Cali,Cox Charlotte,Bucchi Annalisa,Wegner Sven,Bano-Otalora Beatriz,Petit Cheryl,Gill Eleanor,Logantha Sunil Jit,Ashton Nick,Hart George,Zhang Henggui,Cartwright Elizabeth,Wisloff Ulrik,Da Costa Martins Paula,DiFrancesco Dario,Dobrzynski Halina,Piggins Hugh D.,Boyett Mark R.,D’Souza Alicia

Abstract

ABSTRACTIn the human, there is a circadian rhythm in the resting heart rate and it is higher during the day in preparation for physical activity. Conversely, slow heart rhythms (bradyarrhythmias) occur primarily at night. Although the lower heart rate at night is widely assumed to be neural in origin (the result of high vagal tone), the objective of the study was to test whether there is an intrinsic change in heart rate driven by a local circadian clock. In the mouse, there was a circadian rhythm in the heart rate in vivo in the conscious telemetrized animal, but there was also a circadian rhythm in the intrinsic heart rate in denervated preparations: the Langendorff-perfused heart and isolated sinus node. In the sinus node, experiments (qPCR and bioluminescence recordings in mice with a Per1 luciferase reporter) revealed functioning canonical clock genes, e.g. Bmal1 and Per1. We identified a circadian rhythm in the expression of key ion channels, notably the pacemaker channel Hcn4 (mRNA and protein) and the corresponding ionic current (funny current, measured by whole cell patch clamp in isolated sinus node cells). Block of funny current in the isolated sinus node abolished the circadian rhythm in the intrinsic heart rate. Incapacitating the local clock (by cardiac-specific knockout of Bmal1) abolished the normal circadian rhythm of Hcn4, funny current and the intrinsic heart rate. Chromatin immunoprecipitation demonstrated that Hcn4 is a transcriptional target of BMAL1 establishing a pathway by which the local clock can regulate heart rate. In conclusion, there is a circadian rhythm in the intrinsic heart rate as a result of a local circadian clock in the sinus node that drives rhythmic expression of Hcn4. The data reveal a novel regulator of heart rate and mechanistic insight into the occurrence of bradyarrhythmias at night.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3