CorShrink: Empirical Bayes shrinkage estimation of correlations, with applications

Author:

Dey Kushal K.,Stephens Matthew

Abstract

AbstractEstimation of correlation matrices and correlations among variables is a ubiquitous problem in statistics. In many cases – especially when the number of observations is small relative to the number of variables – some kind of shrinkage or regularization is necessary to improve estimation accuracy. Here, we propose an Empirical Bayes shrinkage approach, CorShrink, which adaptively learns how much to shrink correlations by combining information across all pairs of variables. One key feature of CorShrink, which distinguishes it from most existing methods, is its flexibility in dealing with missing data. Indeed, CorShrink explicitly accounts for varying amounts of missingness among pairs of variables. Numerical studies suggest CorShrink is competitive with other popular correlation shrinkage methods, even when there is no missing data. We illustrate CorShrink on gene expression data from GTEx project, which suffers from extensive missing observations, and where existing methods struggle. We also illustrate its flexibility by applying it to estimate cosine similarities between word vectors from word2vec models, thereby generating more accurate word similarity rankings.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3