KLK4 inhibition by cyclic and acyclic peptides: structural and dynamical insights into standard-mechanism protease inhibitors

Author:

Riley Blake T.ORCID,Ilyichova OlgaORCID,de Veer Simon J.ORCID,Swedberg Joakim E.ORCID,Wilson Emily,Hoke David E.,Harris Jonathan M.ORCID,Buckle Ashley M.ORCID

Abstract

AbstractSunflower Trypsin Inhibitor (SFTI-1) is a 14-amino acid serine protease inhibitor. The dual anti-parallel β-sheet arrangement of SFTI-1 is stabilized by a N-terminal-C-terminal backbone cyclization and a further disulfide bridge to form a final bicyclic structure. This constrained structure is further rigidified by an extensive network of internal hydrogen bonds. Thus, the structure of SFTI-1 in solution resembles the protease-bound structure, reducing the entropic penalty upon protease binding. When cleaved at the scissile bond, it is thought that the rigidifying features of SFTI-1 maintain its structure, allowing the scissile bond to be reformed. The lack of structural plasticity for SFTI-1 is proposed to favour initial protease binding and continued occupancy in the protease active site, resulting in an equilibrium between cleaved and uncleaved inhibitor in the presence of protease. We have determined, at 1.15 Å resolution, the x-ray crystal structures of complexes between human kallikrein-related peptidase 4 (KLK4) and SFTI-FCQR(Asn14), and between KLK4 and an acyclic form of the same inhibitor, SFTI-FCQR(Asn14)[1,14], with the latter displaying a cleaved scissile bond. Structural analysis and MD simulations together reveal the roles of altered contact sequence, intramolecular hydrogen bonding network and backbone cyclization, in altering the state of SFTI’s scissile bond ligation at the protease active site. Taken together, the data presented reveal insights into the role of dynamics in the standard-mechanism inhibition, and suggest that modifications on the noncontact strand may be a useful, underexplored approach for generating further potent or selective SFTI-based inhibitors against members of the serine protease family.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3