Soma-axon coupling configurations that enhance neuronal coincidence detection

Author:

Goldwyn Joshua HORCID,Remme Michiel WHORCID,Rinzel John

Abstract

AbstractCoincidence detector neurons transmit timing information by responding preferentially to concurrent synaptic inputs. Principal cells of the medial superior olive (MSO) in the mammalian auditory brainstem are superb coincidence detectors. They encode sound source location with high temporal precision, distinguishing submillisecond timing differences among inputs. We investigate computationally how dynamic coupling between the “input” region (soma and dendrite) and the spike-generating “output” region (axon and axon initial segment) can enhance coincidence detection in MSO neurons. To do this, we formulate a two-compartment neuron model and characterize extensively coincidence detection sensitivity throughout a parameter space of coupling configurations. We focus on the interaction between coupling configuration and two currents that provide dynamic, voltage-gated, negative feedback in subthreshold voltage range: sodium current with rapid inactivation and low-threshold potassium current, IKLT. These currents reduce synaptic summation and can prevent spike generation unless inputs arrive with near simultaneity. We show that strong soma-to-axon coupling promotes the negative feedback effects of sodium inactivation and is, therefore, advantageous for coincidence detection. Furthermore, the “feedforward” combination of strong soma-to-axon coupling and weak axon-to-soma coupling enables spikes to be generated efficiently (few sodium channels needed) and with rapid recovery that enhances high-frequency coincidence detection. These observations detail the functional benefit of the strongly feedforward configuration that has been observed in physiological studies of MSO neurons. We find that IKLT further enhances coincidence detection sensitivity, but with effects that depend on coupling configuration. For instance, in weakly-coupled models, IKLT in the spike-generator compartment enhances coincidence detection more effectively than IKLT in the input compartment. By using a minimal model of soma-to-axon coupling, we connect structure, dynamics, and computation. Here, we consider the particular case of MSO coincidence detectors. In principle, our method for creating and exploring a parameter space of two-compartment models can be applied to other neurons.Author summaryBrain cells (neurons) are spatially extended structures. The locations at which neurons receive inputs and generate outputs are often distinct. We formulate and study a minimal mathematical model that describes the dynamical coupling between the input and output regions of a neuron. We construct our model to reflect known properties of neurons in the auditory brainstem that play an important role in our ability to locate sound sources. These neurons are known as “coincidence detectors” because they are most likely to respond when they receive simultaneous inputs. We use simulations to explore coincidence detection sensitivity throughout the parameter space of input-output coupling and to identify the coupling configurations that are best for neural coincidence detection. We find that strong forward coupling (from input region to output region), enhances coincidence detection sensitivity in our model and that low-threshold potassium current further improves coincidence detection. Our study is significant in that we detail how cell structure affects neuronal dynamics and, consequently, the ability of neurons to perform as temporally-precise coincidence detectors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3