Abstract
AbstractThe viral capsid is a macromolecular complex formed by self-assembled proteins (CPs) which, in many cases, are biopolymers with an identical amino acid sequence. Specific CP-CP interactions drive the capsid self-assembly process. However, it is believed that only a small set of protein-protein interface residues significantly contribute to the formation of the capsid; the so-called “hot-spots”. Here, we investigate the effect of in-vitro point-mutations on the Bromoviridae family structure-conserved interface residues of the icosahedral Cowpea Chlorotic Mottle Virus, previously hypothesized as hot-spots. We study the self-assembly of those mutated recombinant CPs for the formation of capsids by Thermal Shift Assay (TSA). We show that the TSA biophysical technique is a reliable way to characterize capsid assembly. Our results show that point-mutations on non-conserved interface residues produce capsids indistinguishable from the wild-type. In contrast, a single mutation on structure-conserved residues E176 or V189 prevents the formation of the capsid while maintaining the tertiary fold of the CP. Our findings provide experimental evidence of the in-silico conservation-based hot-spot prediction accuracy. As a whole, our methodology provides a framework that could aid in the rational development of molecules to inhibit virus formation, or advance capsid bioengineering to design for their stability, function and applications.
Publisher
Cold Spring Harbor Laboratory