Author:
Amram Shoshik,Iram Tal,Lazdon Ekaterina,Vassar Robert,Ben-Porath Ittai,Frenkel Dan
Abstract
ABSTRACTAlterations in astrocyte function such as a pro-inflammatory phenotype are associated with Alzheimer’s disease (AD). We had shown impairments in the ability of aged astrocytes isolated from 5xFAD mice to clear and uptake amyloid-β (Aβ) as well as to support neuronal growth. Senescent cells accumulate with age and exhibit a senescence-associated secretory phenotype, which includes secretion of pro-inflammatory cytokines. In this study, we predicted that with age, astrocytes in 5xFAD mice would exhibit a cellular senescence phenotype that could promote neurodegeneration. We found an age-dependent increase in senescent astrocytes adjacent to Aβ plaques in 5xFAD mice. Inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells reduced interelukin-6 secretion by senescent astrocytes and resulted in improved neuronal support. Moreover, senescent astrocytes exhibited an increase in the induction of the TGF-β1-SMAD2/3 pathway, and inhibition of this pathway resulted in a reduction of cellular senescence. We also discovered that soluble Aβ42 induced astrocyte senescence in young naïve mice in a SMAD2/3-dependent manner. Our results suggest an important role of astrocyte senescence in AD and its role in mediating the neurotoxicity properties of astrocytes in AD and related neurodegenerative diseases.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献