Translation of upstream open reading frames in a model of neuronal differentiation

Author:

Rodriguez C.M.ORCID,Chun S.Y.,Mills R.E.,Tod P.K.

Abstract

AbstractUpstream open reading frames (uORFs) initiate translation within mRNA 5’ leaders, and have the potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling (RP) studies suggest that translating ribosomes are pervasive within 5’ leaders across model systems. However, the significance of this observation remains unclear. To explore a role for uORF usage in neuronal differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells. Using a spectral coherence algorithm (SPECtre), we identify 4,954 uORFs across 31% of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit translational efficiencies (TE) comparable to annotated coding regions. Usage of both AUG initiated uORFs and a conserved and consistently translated subset of non-AUG initiated uORFs correlates with repressed CDS translation. Ribosomal protein transcripts are enriched in uORFs, and select uORFs on such transcripts were validated for expression. With neuronal differentiation, we observed an overall positive correlation between translational shifts in uORF/CDS pairs. However, a subset of transcripts exhibit inverse shifts in translation of uORF/CDS pairs. These uORFs are enriched in AUG initiation sites, non-overlapping, and shorter in length.Cumulatively, CDSs downstream of uORFs characterized by persistent translation show smaller shifts in TE with neuronal differentiation relative to CDSs without a predicted uORF, suggesting that fluctuations in CDS translation are buffered by uORF translation. In sum, this work provides insights into the dynamic relationships and potential regulatory functions of uORF/CDS pairs in a model of neuronal differentiation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3