Author:
Huttunen Mikko J.,Hristu Radu,Dumitru Adrian,Costache Mariana,Stanciu Stefan G.
Abstract
AbstractHistopathological image analysis performed by a trained expert is currently regarded as the gold-standard in the case of many pathologies, including cancers. However, such approaches are laborious, time consuming and contain a risk for bias or human error. There is thus a clear need for faster, less intrusive and more accurate diagnostic solutions, requiring also minimal human intervention. Multiphoton Microscopy (MPM) can alleviate some of the drawbacks specific to traditional histopathology by exploiting various endogenous optical signals to provide virtual biopsies that reflect the architecture and composition of tissues, both in-vivo or ex-vivo. Here we show that MPM imaging of the dermoepidermal junction (DEJ) in unstained tissues provides useful cues for a histopathologist to identify the onset of non-melanoma skin cancers. Furthermore, we show that MPM images collected on the DEJ, besides being easy to interpret by a trained specialist, can be automatically classified into healthy and dysplastic classes with high precision using a Deep Learning method and existing pre-trained Convolutional Neural Networks. Our results suggest that Deep Learning enhanced MPM for in-vivo skin cancer screening could facilitate timely diagnosis and intervention, enabling thus more optimal therapeutic approaches.
Publisher
Cold Spring Harbor Laboratory
Reference59 articles.
1. Complications of skin biopsy;Journal of cutaneous and aesthetic surgery,2015
2. Pyramid methods in image processing;RCA engineer,1984
3. In vivo multiphoton microscopy of basal cell carcinoma;JAMA dermatology,2015
4. Loss of basement membrane components by invasive tumors but not by their benign counterparts;Laboratory investigation; a journal of technical methods and pathology,1983
5. Skin scarring