Patient-derived xenografts undergo murine-specific tumor evolution

Author:

Ben-David Uri,Ha Gavin,Tseng Yuen-Yi,Greenwald Noah F.,Oh Coyin,Shih Juliann,McFarland James M.,Wong Bang,Boehm Jesse S.,Beroukhim Rameen,Golub Todd R.

Abstract

AbstractPatient-derived xenografts (PDXs) have become a prominent model for studying human cancer in vivo. The underlying assumption is that PDXs faithfully represent the genomic features of primary tumors, retaining their molecular characteristics throughout propagation. However, the genomic stability of PDXs during passaging has not yet been evaluated systematically. Here we monitored the dynamics of copy number alterations (CNAs) in 1,110 PDX samples across 24 cancer types. We found that new CNAs accumulated quickly, such that within four passages an average of 12% of the genome was affected by newly acquired CNAs. Selection for preexisting minor clones was a major contributor to these changes, leading to both gains and losses of CNAs. The rate of CNA acquisition in PDX models was correlated with the extent of both aneuploidy and genetic heterogeneity observed in primary tumors of the same tissue. However, the specific CNAs acquired during PDX passaging differed from those acquired during tumor evolution in patients, suggesting that PDX tumors are subjected to distinct selection pressures compared to those that exist in human hosts. Specifically, several recurrent CNAs observed in primary tumors gradually disappeared in PDXs, indicating that events undergoing positive selection in humans can become dispensable during propagation in mice. Finally, we found that the genomic stability of PDX models also affected their responses to chemotherapy and targeted drugs. Our findings thus highlight the need to couple the timing of PDX molecular characterization to that of drug testing experiments. These results suggest that while PDX models are powerful tools, they should be used with caution.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3