Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms

Author:

Skelly Donal T.,Griffin Éadaoin W.,Murray Carol L.,Harney Sarah,O’Boyle Conor,Hennessy Edel,Rawlins J Nicholas,Bannerman David M.,Cunningham ColmORCID

Abstract

AbstractSystemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Acute episodes of delirium also contribute significantly to rates of long-term cognitive decline, implying that de novo pathology occurs during these acute episodes. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms has not been investigated. Here we show that systemic inflammation, induced by bacterial LPS, produces both working memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100μg/kg) did not affect working memory but robustly impaired contextual fear conditioning (CFC). However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Although LPS-induced deficits still occured in IL-1RI-/- mice, systemic TNF-α was sufficient to induce similar deficits, indicating redundancy among these cytokines. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits despite failing to block brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI-/- dependent-fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but dysfunction leading to neuronal death is mediated by hippocampal IL-1β. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury that may lead to long-term cognitive impairment but that these events are mechanistically dissociable. This would have significant implications for management of cognitive dysfunction and decline during acute illness.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3