Abstract
AbstractThe R peak detection of an ECG signal is the basis of virtually any further processing and any error caused by this detection will propagate to further processing stages. Despite this, R peak detection algorithms and annotated databases often allow large error tolerances around 10%, masking any error introduced. In this paper we have revisited popular ECG R peak detection algorithms by applying sample precision error margins. For this purpose we have created a new open access ECG database with sample precision labelling of both standard Einthoven I, II, III leads and from a chest strap. 25 subjects were recorded and filmed while sitting, solving a maths test, operating a handbike, walking and jogging. Our results show that using an error margin with sample precision, common R peak detection algorithms perform much worse than previously reported. In addition, there are significant performance differences between detectors which can have detrimental effects on applications such as heartrate variability, thus leading to meaningless results.
Publisher
Cold Spring Harbor Laboratory
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献