Identification and localization of the gene for EXTL, a third member of the multiple exostoses gene family.

Author:

Wise C A,Clines G A,Massa H,Trask B J,Lovett M

Abstract

Hereditary multiple exostoses (EXT) is an autosomal dominant disorder characterized by multiple bony outgrowths from the juxtaepiphyseal region of long bones. In a small proportion of cases, these exostoses progress to malignant chondrosarcomas. Genetic linkage of this disorder has been described to three independent loci on chromosomes 8q24.1 (EXT1), 11p11-13 (EXT2), and 19p (EXT-3). The EXT1 and EXT2 genes were isolated recently and show extensive sequence homology to each other. These genes are deleted in exostoses-derived tumors, supporting the hypothesis that they encode tumor suppressors. We have identified a third gene that shows striking sequence similarity to both EXT1 and EXT2 at the nucleotide and amino acid sequence levels, and have derived its entire coding sequence. Although the mRNA transcribed from this gene is similar in size to that from EXT1 and EXT2, its pattern of expression is quite different. We have localized this gene by fluorescence in situ hybridization to metaphase chromosomes and by whole genome radiation hybrid mapping to chromosome 1p36.1 between DIS458 and DIS511, region that frequently shows loss of heterozygosity in a variety of tumor types. This gene, EXTL (for EXT-like), is therefore a new member of the EXT gene family and is a potential candidate for several disease phenotypes.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Reference36 articles.

1. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1)

2. Delineation of a contiguous gene syndrome with multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation, caused by deletions on the short arm of chromosome 11.;Am. J. Hum. Genet.,1996

3. Two distinct regions involved in 1p deletion in human primary breast cancer.;Cancer Res.,1993

4. Cloning of Large Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3