Tombusvirus p19 captures RNase III-cleaved double-stranded RNAs formed by overlapping sense and antisense transcripts in E. coli

Author:

Huang LinfengORCID,Deighan Padraig,Jin Jingmin,Li Yingxue,Lee Elaine,Mo Shirley S.,Hoover Heather,Abubucker Sahar,Finkel Nancy,McReynolds Larry,Hochschild Ann,Lieberman Judy

Abstract

AbstractAntisense transcription is widespread in bacteria. By base pairing with overlapping sense RNAs, antisense RNAs (asRNA) can form long double-stranded RNAs (dsRNA), which are cleaved by RNase III, a dsRNA endoribonuclease. Ectopic expression of plant tombusvirus p19 in E. coli stabilizes ~21 bp dsRNA RNase III decay intermediates, which enabled us to characterize otherwise highly unstable asRNA by deep sequencing of p19-captured dsRNA and total RNA. dsRNA formed at most bacterial genes in the bacterial chromosome and in a plasmid. The most abundant dsRNA clusters were mostly formed by divergent transcription of sense and antisense transcripts overlapping at their 5’-ends. The most abundant clusters included small RNAs, such as ryeA/ryeB, 4 toxin-antitoxin genes, and 3 tRNAs, and some longer coding genes, including rsd and cspD. The sense and antisense transcripts in abundant dsRNA clusters were more plentiful and had longer half-lives in RNase III mutant strains, suggesting that formation of dsRNAs promoted RNA decay at these loci. However, widespread changes in protein levels did not occur in RNase III mutant bacteria. Nonetheless, some proteins involved in antioxidant responses and glycolysis changed reproducibly. dsRNAs accumulated in bacterial cells lacking RNase III, increasing in stationary phase, and correlated with increased cell death in RNase III mutant bacteria in late stationary phase. The physiological importance of widespread antisense transcription in bacteria remains unclear but it may become important during environmental stress. Ectopic expression of p19 is a sensitive method for identifying antisense transcripts and RNase III cleavage sites in bacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3