Abstract
AbstractThe multisubunit ubiquitin ligase APC/C (anaphase promoting complex/cyclosome) is essential for mitosis by promoting timely degradation of cyclin B1. Proper timing of APC/C activation is regulated by the spindle assembly checkpoint (SAC), which is initiated by the kinase MPS1 and implemented by MAD2-dependent inhibition of the APC/C. Here we analysed the contribution of the higher eukaryote-specific APC/C subunits APC7 and APC16 to APC/C composition, function and regulation. APC16 is required for APC7 assembly into the APC/C, while APC16 assembles independently of APC7. ΔAPC7 and ΔAPC16 cells display no major defects in mitotic progression, cyclin B1 degradation or SAC response. Strikingly, however, deletion of either APC7 or APC16 is sufficient to provide synthetic viability to MAD2 deletion. ΔAPC7ΔMAD2 cells display an accelerated mitosis and require SAC-independent MPS1 function for maintaining their genome stability. Overall, these results show how human APC/C composition critically influences the cellular fate upon loss of SAC activity.
Publisher
Cold Spring Harbor Laboratory