Abstract
AbstractPsoriasis is an inflammatory autoimmune disease characterized by skin lesions showing strong neutrophil (PMN) infiltration and high levels of the antimicrobial peptide, LL37, but the role of PMNs in this context remains unclear. We here show that primary human PMNs, especially PMNs from psoriasis patients, not only respond via TLR8 to human and bacterial RNA in complexed with LL37 by cytokine-, chemokine- and neutrophil extracellular trap (NET)-release; they also actively release additional RNA and LL37 in response to stimulation by the same complex and both RNA and LL37 were found to be highly abundant in psoriatic skin. Moreover, RNA-LL37-induced NETs propagated PMN activation and could thus fuel a PMN-mediated and self-sustaining inflammatory loop that may represent an unexpected early initiator or amplifying event in psoriasis. Given that TLR inhibitory oligodeoxynucleotides prevented the cytokine production and NETosis of PMNs by RNA-LL37 complexes in vitro, our study also highlights TLR blockade as a potential therapeutic intervention strategy in psoriasis.SummaryHuman and bacterial RNA in complex with LL37 activates neutrophils via TLR8 to release cytokines, chemokines and neutrophil extracellular traps (NETs). NETs and neutrophil-rich areas in psoriatic skin contain RNA and LL37, suggesting RNA-LL37 may fuel a PMN-mediated and self-sustaining inflammatory cycle in psoriasis.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献