In situ activation and heterologous production of a cryptic lantibiotic from a plant-ant derived Saccharopolyspora species

Author:

Vikeli Eleni,Widdick David A.,Batey Sibyl F.,Heine Daniel,Holmes Neil A.,Bibb Mervyn J.,Martins Dino J.,Pierce Naomi E.,Hutchings Matthew I.,Wilkinson BarrieORCID

Abstract

AbstractMost clinical antibiotics are derived from actinomycete natural products (NPs) discovered at least 60 years ago. Repeated rediscovery of known compounds led the pharmaceutical industry to largely discard microbial NPs as a source of new chemical diversity but advances in genome sequencing revealed that these organisms have the potential to make many more NPs than previously thought. Approaches to unlock NP biosynthesis by genetic manipulation of the strain, by the application of chemical genetics, or by microbial co-cultivation have resulted in the identification of new antibacterial compounds. Concomitantly, intensive exploration of coevolved ecological niches, such as insect-microbe defensive symbioses, has revealed these to be a rich source of chemical novelty. Here we report the novel lanthipeptide antibiotic kyamicin generated through the activation of a cryptic biosynthetic gene cluster identified by genome mining Saccharopolyspora species found in the obligate domatia-dwelling ant Tetraponera penzigi of the ant plant Vachellia drepanolobium. Heterologous production and purification of kyamicin allowed its structural characterisation and bioactivity determination. Our activation strategy was also successful for the expression of lantibiotics from other genera, paving the way for a synthetic heterologous expression platform for the discovery of lanthipeptides that are not detected under laboratory conditions or that are new to nature.ImportanceThe discovery of novel antibiotics to tackle the growing threat of antimicrobial resistance is impeded by difficulties in accessing the full biosynthetic potential of microorganisms. The development of new tools to unlock the biosynthesis of cryptic bacterial natural products will greatly increase the repertoire of natural product scaffolds. Here we report an activation strategy that can be rapidly applied to activate the biosynthesis of cryptic lanthipeptide biosynthetic gene clusters. This allowed the discovery of a new lanthipeptide antibiotic directly from the native host and via heterologous expression.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. O’Neill J , Davies S , Rex J , White L , Murray R. 2016. Review on antimicrobial resistance, tackling drug-resistant infections globally: final report and recommendations. London: Wellcome Trust and UK Government.

2. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis;Lancet Infect Dis,2018

3. Talkington K , Shore C , Kothari P. 2016. A scientific roadmap for antibiotic discovery. The Pew Charitable Trust: Philadelphia, PA, USA.

4. A roadmap for natural product discovery based on large-scale genomics and metabolomics

5. Kämpfer P , Glaeser SP , Parkes L , van Keulen G , Dyson P. 2014. The Family Streptomycetaceae. The Prokaryotes: Actinobacteria:889–1010.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3