Transformation and Integration of Microenvironment Microarray Data Improves Discovery of Latent Effects

Author:

Hunt Gregory J.ORCID,Dane Mark A.,Korkola James E.,Heiser Laura M.,Gagnon-Bartsch Johann A.ORCID

Abstract

SummaryThe immediate physical and bio-chemical surroundings of a cell, the cellular microenvironment, is an important component of many fundamental cell and tissue level processes and is implicated in many diseases and dysfunctions. Thus understanding the interaction of cells with their microenvironment can further both basic research and aid the discovery of therapeutic agents. To study perturbations of cellular microenvironments a novel image-based cell-profiling technology called the microenvironment microarray (MEMA) has been recently employed. In this paper we explore the effect of preprocessing transformations for MEMA data on the discovery of biological and technical latent effects. We find that Gaussianizing the data and carefully removing outliers can enhance discovery of important biological effects. In particular, these transformations help reveal a relationship between cell morphological features and the extra-cellular-matrix protein THBS1 in MCF10A breast tissue. More broadly, MEMAs are part of a recent and wide-spread adoption of image-based cell-profiling technologies in the quantification of phenotypic differences among cell populations (Caicedo et al., 2017). Thus we anticipate that the advantages of the proposed preprocessing transformations will likely also be realized in the analysis of data from other highly-multiplexed technologies like Cyclic Immunofluorescence. All code and supplementary analysis for this paper is available at gjhunt.github.io/rr.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3