Conjunction of Factors Triggering Waves of Seasonal Influenza

Author:

Chattopadhyay Ishanu,Kıcıman Emre,Elliott Joshua W.,Shaman Jeffrey L.,Rzhetsky AndreyORCID

Abstract

AbstractUnderstanding the subtle confluence of factors triggering pan-continental, seasonal epidemics of influenza-like illness is an extremely important problem, with the potential to save tens of thousands of lives and billions of dollars every year in the US alone. Beginning with several large, longitudinal datasets on putative factors and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of epidemics. Our analysis included insurance claims for a significant cross-section of the US population in the past decade, human movement patterns inferred from billions of tweets, whole-US weekly weather data covering the same time span as the medical records, data on vaccination coverage over the same period, and sequence variations of key viral proteins. We also explicitly accounted for the spatio-temporal auto-correlations of infectious waves, and a host of socioeconomic and demographic factors. We carried out multiple orthogonal statistical analyses on these diverse, large geo-temporal datasets to bolster and corroborate our findings. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions, the strongest predictor groups are as follows, ranked by importance: (1) the host population’s socio- and ethno-demographic properties; (2) weather variables pertaining to relevant area specific humidity, temperature, and solar radiation; (3) the virus’ antigenic drift over time; (4) the host population’s land-based travel habits, and; (5) the spatio-temporal dynamics’ immediate history, as reflected in the influenza wave autocorrelation. The models we infer are demonstrably predictive (area under the Receiver Operating Characteristic curve ≈ 80%) when tested with out-of-sample data, opening the door to the potential formulation of new population-level intervention and mitigation policies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3