Enhancing Simulations With Intra-Subject Variability for Improved Psychophysical Assessments

Author:

Rinderknecht Mike D.ORCID,Lambercy OlivierORCID,Gassert RogerORCID

Abstract

Psychometric properties of perceptual assessments, like reliability, depend on the stochastic properties of psychophysical sampling procedures resulting in method variability, as well as inter- and intra-subject variability. Method variability is commonly minimized by optimizing sampling procedures through computer simulations. Inter-subject variability is inherent in the population of interest and cannot be acted upon. In contrast, intra-subject variability introduced by confounds cannot be simply quantified from experimental data, as this data also includes method variability. Therefore, this aspect is generally neglected when developing assessments. Yet, comparing method variability and intra-subject variability could give insights on whether effort should be invested in optimizing the sampling procedure, or in addressing potential confounds instead. We propose a new approach to estimate and model intra-subject variability of psychometric functions by combining computer simulations and behavioral data, and to account for it when simulating experiments. The approach was illustrated in a real-world scenario of proprioceptive difference threshold assessments. The behavioral study revealed a test-retest reliability of 0.212. Computer simulations lacking intra-subject variability predicted a reliability of 0.768, whereas the new approach including an intra-subject variability model lead to a realistic estimate of reliability (0.207). Such a model also allows computing the theoretically maximally attainable reliability (0.552) assuming an ideal sampling procedure. Comparing the reliability estimates when exclusively accounting for method variability versus intra-subject variability reveals that intra-subject variability should be reduced by addressing confounds and that only optimizing the sampling procedure may be insufficient to achieve a high reliability. The new approach also allows accelerating the development of assessments by simulating the converging behavior of the reliability confidence interval with a large number of subjects and retests without requiring additional experiments. Having such a tool of predictive value is especially important for target populations where time is scarce, such as for assessments in clinical settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3