Author:
Andrieu Cyril,Montigny Audrey,Alfandari Dominique,Theveneau Eric
Abstract
SummaryThe transmembrane Matrix Metalloproteinase MMP14/MT1-MMP is known to promote cell migration by cleavage of the extracellular matrix. To initiate migration, epithelial cells need to gain mesenchymal attributes. They reduce cell-cell junctions and apicobasal polarity and gain migratory capabilities. This process is named epithelial-mesenchymal transition (EMT). MMP14’s implication in EMT is still ill-defined. We used chick neural crest (NC) cells as a model to explore the function of MMP14 in physiological EMT. Our results show that MMP14 is expressed by chick NC cells. However, it is its subcellular localization, rather than its expression, that correlates with EMT. MMP14 is first apical and switches to basolateral domains during EMT. Loss of function and rescue experiments show that MMP14 is involved in EMT independently of its catalytic activity. It lies downstream of pro-EMT genes and upstream of cell polarity. We found that basolateral localization of MMP14 is required and sufficient to induce polarity change in NC cells and neuroepithelial cells, respectively. These effects on polarity occur without impact on cell-cell adhesion or the extracellular matrix. Overall, our data points to a new function of MMP14 in EMT that will need to be further explored in other systems such as cancer cells.
Publisher
Cold Spring Harbor Laboratory