Drought Affects the Antioxidant System and Stomatal Aperture in Zanthoxylum bungeanum Maxim

Author:

Fei Xitong,Hu Haichao,Li Jingmiao,Liu Yulin,Wei Anzhi

Abstract

AbstractWhen under drought, plants activate a range of self-protective responses. Among these are activation of the antioxidant system and changes in stomatal aperture. The antioxidant system can remove the reactive oxygen species produced under drought conditions and so mitigate oxidative damage. Water becomes a severely limiting resource for plants suffering drought stress, so they generally close their stomata to reduce water loss. We examined changes in the activities of the antioxidant enzymes and altered gene expression patterns in Zanthoxylum bungeanum plants exposed to drought by irrigation with 20% PEG6000. We also recorded changes in stomatal aperture as the drought persisted. Relationships between the antioxidant system and stomatal aperture were analyzed in relation to gene expression. The results indicate that under drought stress, POD, CAT, APX, proline, MDA and related genes all show positive responses to drought, while SOD and its genes showed a negative response. The relationship between drought duration and stomatal aperture was considered. Stomatal aperture declines exponentially as drought duration increases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3