The standard genetic code facilitates exploration of the space of functional nucleotide sequences

Author:

Tripathi Shubham,Deem Michael W.

Abstract

AbstractThe standard genetic code is well known to be optimized for minimizing the phenotypic effects of single nucleotide substitutions, a property that was likely selected for during the emergence of a universal code. Given the fitness advantage afforded by high standing genetic diversity in a population in a dynamic environment, it is possible that selection to explore a large fraction of the space of functional proteins also occurred. To determine whether selection for such a property played a role during the emergence of the nearly universal genetic code, we investigated the number of functional variants of the Escherichia coli PhoQ protein explored at different time scales under translation using different genetic codes. We found that the standard genetic code is highly optimal for exploring a large fraction of the space of functional PhoQ variants at intermediate time scales as compared to random codes. Environmental changes, in response to which genetic diversity in a population provides a fitness advantage, are likely to have occurred at these intermediate time scales. Our results indicate that the ability of the standard code to explore a large fraction of the space of functional sequence variants arises from a balance between robustness and flexibility and is largely independent of the property of the standard code to minimize the phenotypic effects of mutations. We propose that selection to explore a large fraction of the functional sequence space while minimizing the phenotypic effects of mutations contributed towards the emergence of the standard code as the universal genetic code.

Publisher

Cold Spring Harbor Laboratory

Reference44 articles.

1. Alberts B , Johnson A , Lewis J . 2008. Molecular Biology of the Cell. 5th ed. Garland Science, New York

2. Alff-Steinberger C . 1969. The Genetic Code and Error Transmission. Proc. Natl. Acad. Sci. U. S. A. 64:584–591.

3. Protein Structure and Function;Biochemistry,2002

4. Blondel VD , Guillaume J-L , Lambiotte R , Lefebvre E . 2008. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008:P10008.

5. Extreme genetic code optimality from a molecular dynamics calculation of amino acid polar requirement;Phys. Rev,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3