Abstract
AbstractGenomic signatures associated with population divergence, speciation and the evolutionary mechanisms responsible for these are key research topics in evolutionary biology. Evolutionary radiations and parallel evolution have offered opportunities to study the role of the environment by providing replicates of ecologically driven speciation. Here, we apply an extension of the parallel evolution framework to study replicates of ecological speciation where multiple species went through a process of population divergence during the colonization of a common environmental gradient. We used the conditions offered by the North Sea – Baltic Sea environmental transition zone and found clear evidence of population structure linked to the Baltic Sea salinity gradient in four flatfish species. We found highly heterogeneous signatures of population divergence within and between species, and no evidence of parallel genomic architecture across species associated with the divergence. Analyses of demographic history suggest that Baltic Sea lineages are older than the age of the Baltic Sea itself. In most cases, divergence appears to involve reticulated demography through secondary contact, and our analyses revealed that genomic patterns of divergence were likely the result of a combination of effects from past isolation and subsequent adaptation to a new environment. In one case, we identified two large structural variants associated with the environmental gradient, where populations were inferred to have diverged in the presence of gene flow. Our results highlight the heterogeneous genomic effects associated with complex interplays of evolutionary forces, and stress the importance of genomic background for studies of parallel evolution.
Publisher
Cold Spring Harbor Laboratory
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献