A novel dimeric active site and regulation mechanism revealed by the crystal structure of iPLA2β

Author:

Malley Konstantin R.,Koroleva Olga,Miller Ian,Sanishvili Ruslan,Jenkins Christopher M.,Gross Richard W.,Korolev Sergey

Abstract

AbstractCalcium-independent phospholipase A2β (iPLA2β) regulates several physiological processes including inflammation, calcium homeostasis and apoptosis. It is linked genetically to neurodegenerative disorders including Parkinson’s disease. Despite its known enzymatic activity, the mechanisms underlying pathologic phenotypes remain unknown. Here, we present the first crystal structure of iPLA2β that significantly revises existing mechanistic models. The catalytic domains form a tight dimer. The ankyrin repeat domains wrap around the catalytic domains in an outwardly flared orientation, poised to interact with membrane proteins. The closely integrated active sites are positioned for cooperative activation and internal transacylation. A single calmodulin binds and allosterically inhibits both catalytic domains. These unique structural features identify the molecular interactions that can regulate iPLA2β activity and its cellular localization, which can be targeted to identify novel inhibitors for therapeutic purposes. The structure provides a well-defined framework to investigate the role of neurodegenerative mutations and the function of iPLA2β in the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3