Fine mapping chromatin contacts in capture Hi-C data

Author:

Eijsbouts ChristiaanORCID,Burren OliverORCID,Newcombe PaulORCID,Wallace ChrisORCID

Abstract

ABSTRACTHi-C and capture Hi-C (CHi-C) are used to map physical contacts between chromatin regions in cell nuclei using high-throughput sequencing. Analysis typically proceeds considering the evidence for contacts between each possible pair of fragments independent from other pairs. This can produce long runs of fragments which appear to all make contact with the same baited fragment of interest. We hypothesised that these long runs could result from a smaller subset of direct contacts and propose a new method, based on a Bayesian sparse variable selection approach, which attempts to fine map these direct contacts.Our model is conceptually novel, exploiting the spatial pattern of counts in CHi-C data, and prioritises fragments with biological properties that would be expected of true contacts. For bait fragments corresponding to gene promoters, we identify contact fragments with active chromatin and contacts that correspond to edges found in previously defined enhancer-target networks; conversely, for intergenic bait fragments, we identify contact fragments corresponding to promoters for genes expressed in that cell type. We show that long runs of apparently co-contacting fragments can typically be explained using a subset of direct contacts consisting of < 10% of the number in the full run, suggesting that greater resolution can be extracted from existing datasets. Our results appear largely complementary to the those from a per-fragment analytical approach, suggesting that they provide an additional level of interpretation that may be used to increase resolution for mapping direct contacts in CHi-C experiments.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3