Inference of Synaptic Connectivity and External Variability in Neural Microcircuits

Author:

Baker CodyORCID,Froudarakis Emmanouil,Yatsenko Dimitri,Tolias Andreas S.,Rosenbaum RobertORCID

Abstract

AbstractA major goal in neuroscience is to estimate neural connectivity from large scale extracellular recordings of neural activity in vivo. This is challenging in part because any such activity is modulated by the unmeasured external synaptic input to the network, known as the common input problem. Many different measures of functional connectivity have been proposed in the literature, but their direct relationship to synaptic connectivity is often assumed or ignored. For in vivo data, measurements of this relationship would require a knowledge of ground truth connectivity, which is nearly always unavailable. Instead, many studies use in silico simulations as benchmarks for investigation, but such approaches necessarily rely upon a variety of simplifying assumptions about the simulated network and can depend on numerous simulation parameters. We combine neuronal network simulations, mathematical analysis, and calcium imaging data to address the question of when and how functional connectivity, synaptic connectivity, and latent external input variability can be untangled. We show numerically and analytically that, even though the precision matrix of recorded spiking activity does not uniquely determine synaptic connectivity, it is often closely related to synaptic connectivity in practice under various network models. This relation becomes more pronounced when the spatial structure of neuronal variability is considered jointly with precision.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

1. Baker C , Ebsch C , Lampl I , Rosenbaum R (2018) The correlated state in balanced neuronal networks. bioRxiv p 372607

2. Synaptic scaling rule preserves excitatory–inhibitory balance and salient neuronal network dynamics

3. Bishop CM (2007) Pattern Recognition and Machine Learning

4. Brinkman BAW , Rieke F , Shea-Brown E , Buice MA (2017) Predicting how and when hidden neurons skew measured synaptic interactions pp 1–50

5. Ensemble stacking mitigates biases in inference of synaptic connectivity;Network Neuroscience Ensemble stacking mitigates biases in inference of synaptic connectivity,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3