Clonal dynamics of haematopoiesis across the human lifespan

Author:

Mitchell Emily,Chapman Michael Spencer,Williams Nicholas,Dawson Kevin,Mende Nicole,Calderbank Emily F,Jung Hyunchul,Mitchell Thomas,Coorens TimORCID,Spencer DavidORCID,Machado Heather,Lee-Six Henry,Davies Megan,Hayler Daniel,Fabre Margarete,Mahbubani Krishnaa,Abascal Fede,Cagan Alex,Vassiliou GeorgeORCID,Baxter Joanna,Martincorena Inigo,Stratton Michael R,Kent DavidORCID,Chatterjee Krishna,Parsy Kourosh Saeb,Green Anthony R,Nangalia JyotiORCID,Laurenti ElisaORCID,Campbell Peter J

Abstract

AbstractAge-related change in human haematopoiesis causes reduced regenerative capacity1, cytopenias2, immune dysfunction3 and increased risk of blood cancer. The cellular alterations that underpin the abruptness of this functional decline after the age of 70 years remain elusive. We sequenced 3579 genomes from single-cell-derived colonies of haematopoietic stem cell/multipotent progenitors (HSC/MPPs) across 10 haematologically normal subjects aged 0-81 years. HSC/MPPs accumulated 17 mutations/year after birth and lost 30bp/year of telomere length. Haematopoiesis in adults aged <65 was massively polyclonal, with high indices of clonal diversity and a stable population of 20,000–200,000 HSC/MPPs contributing evenly to blood production. In contrast, haematopoiesis in individuals aged >75 showed profoundly decreased clonal diversity. In each elderly subject, 30-60% of haematopoiesis was accounted for by 12-18 independent clones, each contributing 1-34% of blood production. Most clones had begun their expansion before age 40, but only 22% had known driver mutations. Genome-wide selection analysis estimated that 1/34 to 1/12 non-synonymous mutations were drivers, occurring at a constant rate throughout life, affecting a wider pool of genes than identified in blood cancers. Loss of Y chromosome conferred selective benefits on HSC/MPPs in males. Simulations from a simple model of haematopoiesis, with constant HSC population size and constant acquisition of driver mutations conferring moderate fitness benefits, entirely explained the abrupt change in clonal structure in the elderly. Rapidly decreasing clonal diversity is a universal feature of haematopoiesis in aged humans, underpinned by pervasive positive selection acting on many more genes than currently identified.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3