Abstract
AbstractCoenzyme F420 is a microbial redox cofactor that is increasingly used for biocatalytic applications. Recently, diversified biosynthetic routes to F420 and the discovery of a derivative, 3PG-F420, were reported. 3PG-F420 is formed via activation of 3-phospho-D-glycerate (3-PG) by CofC, but the structural basis of substrate binding, its evolution, as well as the role of CofD in substrate selection remained elusive.Here, we present a crystal structure of the 3-PG-activating CofC from Mycetohabitans sp. B3 and define amino acids governing substrate specificity. Site-directed mutagenesis enabled bidirectional switching of specificity and thereby revealed the short evolutionary trajectory to 3PG-F420 formation. Furthermore, CofC stabilized its product, thus confirming the structure of the unstable molecule, revealing its binding mode and suggesting a substrate channeling mechanism to CofD. The latter enzyme was shown to significantly contribute to the selection of related intermediates to control the specificity of the combined biosynthetic CofC/D step. Taken together, this work closes important knowledge gaps and opens up perspectives for the discovery, enhanced biotechnological production, and engineering of coenzyme F420 derivatives in the future.ImportanceThe microbial cofactor F420 is crucial for processes like methanogenesis, antibiotics biosynthesis, drug resistance, and biocatalysis. Recently, a novel derivative of F420 (3PG-F420) was discovered, enabling the production and use of F420 in heterologous hosts.By analyzing the crystal structure of a CofC homolog whose substrate choice leads to formation of 3PG-F420, we defined amino acid residues governing the special substrate selectivity. A diagnostic residue enabled reprogramming of the substrate specificity, thus mimicking the evolution of the novel cofactor derivative and successfully guiding the identification of further 3-PG-activating enzymes.Furthermore, a labile reaction product of CofC was revealed that has not been directly detected so far and CofD was shown to provide as another layer of specificity of the combined CofC/D reaction, thus controlling the initial substrate choice of CofC. The latter finding resolves a current debate in the literature about the starting point of F420 biosynthesis in various organisms.
Publisher
Cold Spring Harbor Laboratory