Cell tip growth underlies injury response of marine macroalgae

Author:

Shirae-Kurabayashi Maki,Edzuka Tomoya,Suzuki Masahiro,Goshima Gohta

Abstract

AbstractRegeneration is a widely observed phenomenon by which the integrity of an organism is recovered after damage. So far, studies on the molecular and cellular mechanisms of regeneration have been limited to a handful of model multicellular organisms. Here, we systematically surveyed the regeneration ability of marine macroalgae (Rhodophyta, Phaeophyceae, Chlorophyta) after thallus severing and applied live cell microscopy on them to uncover the cellular response to the damage. We observed three types of responses – budding, rhizoid formation and/or sporulation – in 25 species among 66 examined, demonstrating the high potential of regeneration of macroalgae. In contrast, callus formation, which often accompanies plant regeneration, was never observed. We monitored the cellular and nuclear dynamics during cell repair or rhizoid formation of four phylogenetically diverged Rhodophyta and Chlorophyta species (Colaconema sp., Dasya sessilis, Cladophora albida, Codium fragile). We observed tip growth of the cells near the damaged site as a common response, despite the difference in the number of nuclei and cells across species. Nuclear translocation follows tip growth, enabling overall uniform distribution of multinuclei (Dasya sessilis, Cladophora albida, Codium fragile) or central positioning of the mononucleus (Colaconema sp.). In contrast, the control of cell cycle events, such as nuclear division and septation, varied in these species. In Dasya sessilis, the division of multinuclei was synchronised, whereas it was not the case in Cladophora albida. Septation was tightly coupled with nuclear division in Colaconema and Dasya but not in others. These observations show that marine macroalgae utilise a variety of regeneration pathways, with some common features. This study also provides a novel methodology of live cell biology in macroalgae, offering a foundation for the future of this under-studied taxon.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3