Decoding cellular deformation from pseudo-simultaneously observed Rho GTPase activities

Author:

Kunida Katsuyuki,Takagi Nobuhiro,Ikeda Kazushi,Nakamura Takeshi,Sakumura Yuichi

Abstract

AbstractThe inability to simultaneously observe all of the important Rho GTPases (Cdc42, Rac1, and RhoA) has prevented us from obtaining evidence of their coordinated regulation during cell deformation. Here, we propose Motion-Triggered Average (MTA), an algorithm that converts individually observed GTPases into pseudo-simultaneous observations. Using the time series obtained by MTA and mathematical model, we succeeded for the first time in decoding the cell edge velocity from the three GTPase activities to provide clear numerical evidence for coordinated cell edge regulation by the three GTPases. We found that the characteristics of the obtained activities were consistent with those of previous studies, and that GTPase activities and their derivatives were involved in edge regulation. Our approach provides an effective strategy for using single-molecule observations to elucidate problems hampered by the lack of simultaneous observations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3