The origin of universal cell shape variability in a confluent epithelial monolayer

Author:

Sadhukhan Souvik,Nandi Saroj Kumar

Abstract

Cell shape is fundamental in biology. The average cell shape can influence crucial biological functions, such as cell fate and division orientation. But cell-to-cell shape variability is often regarded as noise. In contrast, recent works reveal that shape variability in diverse epithelial monolayers follows a nearly universal distribution. However, the origin and implications of this universality are unclear. Here, assuming contractility and adhesion are crucial for cell shape, characterized via aspect ratio (AR), we develop a mean-field analytical theory for shape variability. We find that a single parameter, α, containing all the system-specific details, describes the probability distribution function (PDF) of AR; this leads to a universal relation between the standard deviation and the average of AR. The PDF for the scaled AR is not strictly but almost universal. The functional form is not related to jamming, contrary to common beliefs, but a consequence of a mathematical property. In addition, we obtain the scaled area distribution, described by the parameter µ. We show that α and µ together can distinguish the effects of changing physical conditions, such as maturation, on different system properties. The theory is verified in simulations of two distinct models of epithelial monolayers and agrees well with existing experiments. We demonstrate that in a confluent monolayer, average shape determines both the shape variability and dynamics. Our results imply the cell shape variability is inevitable, where a single parameter describes both statics and dynamics and provides a framework to analyze and compare diverse epithelial systems.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3