Reconstruction of phospholipid synthesis by combing in vitro fatty acid synthesis and cell-free gene expression

Author:

Eto Sumie,Matsumura Rumie,Fujimi Mai,Shimane Yasuhiro,Berhanu Samuel,Kasama Takeshi,Kuruma YutetsuORCID

Abstract

AbstractPhospholipid synthesis is a fundamental process that promotes cell propagation and, presently, is the most challenging issue in artificial cell research aimed at reconstituting living cells from biomolecules. Here, we constructed a cell-free phospholipid synthesis system that combines in vitro fatty acid synthesis and a cell-free gene expression system that synthesizes acyltransferases for phospholipid synthesis. Fatty acids were synthesized from acetyl-CoA and malonyl-CoA, then continuously converted into phosphatidic acids by the cell-free synthesized acyltransferases. Because the system can avoid the accumulation of synthetic intermediates that suppress the reaction, the yield of phospholipid has significantly improved from previous schemes (up to 400 µM). Additionally, by adding enzymes for recycling CoA, we synthesized phosphatidic acids from acetic acid and bicarbonate as carbon sources. The constructed system is available to express the genes from pathogenic bacteria and to analyze the synthesized phospholipids. By encapsulating our system inside giant vesicles, it would be possible to construct the artificial cells in which the membrane grows and divides sustainably.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3