Information Flow in the Fibroblast Growth Factor Receptor Communication Channel

Author:

Díaz José,Martínez-Mekler Gustavo

Abstract

AbstractIn this work we analyze the flow of information through the Fibroblast Growth Factor Receptor (FGFR) communication channel when different types of signals are transmitted by the MAPK cascade to the gene regulatory network (GRN) formed by the genes C-Myc, DUSP, and Cdc25A, which control fibroblast proliferation. We used the canonical mathematical model of the MAPK cascade coupled to a stochastic model for the activation of the gene regulatory network, subject to different types of FGF inputs (step, quadratic pulses, Dirac delta, and white noise), in order to analyze the response of the gene regulatory network to each type of signal, and determine the temporal variation of the value of its Shannon entropy in each case. Our model suggests that the sustained activation of the FGFR communication channel with a step of FGF > 1 nM is required for cell cycle progression and that during the G1/S transition the amount of uncertainty of the GRN remains at a steady value of ∼ 2.75 bits, indicating that while the fibroblast stimulation with FGF continues the G1/S transition does not require an additional interchange of information between the emitter and the gene regulatory network to be completed. We also found that either low frequency pulses of FGF or low frequency noise, both with a frequency f ≤ 2.77 Hz, are not filtered by the MAPK cascade and can modify the output of the communication channel, i.e., the amount of the effector proteins c-myc, cdc25A and DUSP. An additional effect suggested by our model is that o low frequency periodic signals and noise possibly blockage cell cycle progression because the threshold value concentration of cdc25A for the G1/S transition is not sustained in the in the nucleus during the 10 hours that this process lasts. Finally, from our model we can estimate the capacity of this communication channel in 0.96 bits/min.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3