MotSASi: Functional Short Linear Motifs (SLiMs) prediction based on genomic single nucleotide variants and structural data

Author:

Martín MarianoORCID,Modenutti Carlos P.ORCID,Nicola Juan P.ORCID,Marti Marcelo A.ORCID

Abstract

AbstractShort linear motifs (SLiMs) are key to cell physiology mediating reversible protein-protein interactions. Precise identification of SLiMs remains a challenge, being the main drawback of most bioinformatic prediction tools their low specificity (high number of false positives). An important, usually overlooked, aspect is the relation between SLiMs mutations and disease. The presence of variants in each residue position can be used to assess the relevance of the corresponding residue(s) for protein function, and its (in)tolerance to change.In the present work, we combined sequence variant information and structural analysis of the energetic impact of single amino acid substitution (SAS) in SLiM-Receptor complex structure, and showed that it significantly improves prediction of true functional SLiMs. Our strategy is based on building a SAS tolerance matrix that shows, for each position, whether one of the possible 19 SAS is tolerated or not. Herein we present the MotSASi strategy and analyze in detail 4 SLiMs involved in intracellular protein trafficking. Our results show that inclusion of variant and sequence information significantly improves both prediction of true SLiMs and rejection of false positives, while also allowing better classification of variants inside SLiMs, a results with a direct impact in clinical genomics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3