Petascale neural circuit reconstruction: automated methods

Author:

Macrina ThomasORCID,Lee Kisuk,Lu Ran,Turner Nicholas L.ORCID,Wu JingpengORCID,Popovych Sergiy,Silversmith WilliamORCID,Kemnitz NicoORCID,Bae J. AlexanderORCID,Castro Manuel A.,Dorkenwald SvenORCID,Halageri Akhilesh,Jia Zhen,Jordan Chris,Li Kai,Mitchell Eric,Mondal Shanka Subhra,Mu Shang,Nehoran Barak,Wong William,Yu Szi-chieh,Bodor Agnes L.,Brittain Derrick,Buchanan JoAnn,Bumbarger Daniel J.,Cobos Erick,Collman Forrest,Elabbady Leila,Fahey Paul G.ORCID,Froudarakis Emmanouil,Kapner Daniel,Kinn Sam,Mahalingam Gayathri,Papadopoulos SteliosORCID,Patel Saumil,Schneider-Mizell Casey M.ORCID,Sinz Fabian H.,Takeno Marc,Torres Russel,Yin Wenjing,Pitkow Xaq,Reimer Jacob,Tolias Andreas S.,Reid R. Clay,Costa Nuno Maçarico daORCID,Seung H. SebastianORCID

Abstract

Abstract3D electron microscopy (EM) has been successful at mapping invertebrate nervous systems, but the approach has been limited to small chunks of mammalian brains. To scale up to larger volumes, we have built a computational pipeline for processing petascale image datasets acquired by serial section EM, a popular form of 3D EM. The pipeline employs convolutional nets to compute the nonsmooth transformations required to align images of serial sections containing numerous cracks and folds, detect neuronal boundaries, label voxels as axon, dendrite, soma, and other semantic categories, and detect synapses and assign them to presynaptic and postsynaptic segments. The output of neuronal boundary detection is segmented by mean affinity agglomeration with semantic and size constraints. Pipeline operations are implemented by leveraging distributed and cloud computing. Intermediate results of the pipeline are held in cloud storage, and can be effortlessly viewed as images, which aids debugging. We applied the pipeline to create an automated reconstruction of an EM image volume spanning four visual cortical areas of a mouse brain. Code for the pipeline is publicly available, as is the reconstructed volume.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3