Defining the components of the miRNA156-SPL-miR172 aging pathway in pea and their expression relative to changes in leaf morphology

Author:

Vander Schoor J.K.ORCID,Hecht V.ORCID,Aubert G.ORCID,Burstin J.ORCID,Weller J.L.ORCID

Abstract

AbstractThe timing of developmental phase transitions is crucial for plant reproductive success, and two microRNAs (miRNA), miR156 and miR172, are implicated in the control of these changes, together with their respective SQUAMOSA promoter binding-like (SPL) and APETALA2 (AP2)-like targets. While their patterns of regulation have been studied in a growing range of species, to date they have not been examined in pea (Pisum sativum), an important legume crop and model species. We analysed the recently-released pea genome and defined nine miR156, 21 SPL, four miR172, and five AP2-like genes. Phylogenetic analysis of the SPL genes in pea, Medicago and Arabidopsis confirmed the eight previously defined clades, and identified a ninth potentially legume-specific SPL clade in pea and Medicago. Among the PsSPL, 14 contain a miR156 binding site and all five AP2-like transcription factors in pea include a miR172 binding site. Phylogenetic relationships, expression levels and temporal expression changes identified PsSPL2a/3a/3c/6b/9a/9b/13b/21, PsmiR156d/j and PsmiR172a/d as the most likely of these genes to participate in phase change in pea. Comparisons with leaf morphology suggests that vegetative phase change is unlikely to be definitively marked by a change in leaflet number. In addition, the timing of FT gene induction suggests that the shift from the juvenile to the adult vegetative phase may occur within fourteen days in plants grown under inductive conditions, and calls into question the contribution of miR172/AP2 to the floral transition. This work provides the first insight into the nature of vegetative phase change in pea, and an important foundation for future functional studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3